Evolutionary Endocrinology of Juvenile Hormone Esterase: Functional Relationship with Wing Polymorphism in the Cricket, Gryllus Firmus.
نویسندگان
چکیده
The existence, nature, and physiological consequences of genetic variation for juvenile hormone esterase (JHE) activity was studied in the wing-polymorphic cricket, Gryllus firmus. Hemolymph (blood) JHE activity was sixfold lower in nascent short-winged (SW) females, relative to nascent long-winged (LW) females during the last juvenile stadium (stage). Morph-associated genetic variation for JHE activity had two causes, variation in loci: (1) regulating whole-organism enzyme activity; and (2) controlling the degree to which JHE is secreted into the blood Reduced JHE activity in nascent SW-selected individuals was associated with reduced in vivo juvenile hormone catabolism. This suggests that variation in JHE activity during juvenile development may have important physiological consequences with respect to the regulation of blood levels of juvenile hormone and consequent specification of wing morph. This is the first definitive demonstration of genetic variation for hormonal metabolism in any insect and a genetic association between hormone metabolism and the subsequent expression of morphological variation (wing morph). However, we have not yet firmly established whether these associations represent causal relationships In contrast to the clear association between JHE activity and wing morph development, we observed no evidence indicating that variation in JHE activity plays any direct or indirect role in causing the dramatic differences in ovarian growth between adult wing morphs. Variation in JHE activity also does not appear to be important in coordinating the development of wing morph with the subsequent expression of reproductive differences between adult morphs. Finally genetic variation for the developmental profiles of JHE activity during juvenile and adult stages are remarkably similar in three Gryllus species. This suggests that genetic correlations between JHE activities during different periods of development, which underlie these activity profiles, have been conserved since the divergence of the three Gryllus species.
منابع مشابه
Hormones in the field: evolutionary endocrinology of juvenile hormone and ecdysteroids in field populations of the wing-dimorphic cricket Gryllus firmus.
Virtually no published information exists on insect endocrine traits in natural populations, which limits our understanding of endocrine microevolution. We characterized the hemolymph titers of juvenile hormone (JH) and ecdysteroids (ECDs), two key insect hormones, in field-collected short-winged, flightless (SW) and long-winged, flight-capable (LW(f)) morphs of the cricket Gryllus firmus. The ...
متن کاملJuvenile hormone titer and morph-specific reproduction in the wing-polymorphic cricket, Gryllus firmus.
Juvenile hormone titers and reproductive characteristics were measured in adult wing and flight-muscle morphs of the wing-polymorphic cricket, Gryllus firmus, during the first week of adulthood. This species has three morphs: one flight capable morph with fully-developed wings and fully-developed flight muscles [LW(F)], one flightless morph with fully-developed wings and histolyzed (non-functio...
متن کاملEvolutionary endocrinology of juvenile hormone esterase in Gryllus assimilis: direct and correlated responses to selection.
Hemolymph juvenile hormone esterase (JHE) activity on the third day of the last stadium in the cricket, Gryllus assimilis, exhibited a significant response to selection in each of six replicate lines. Mean realized heritability was 0.26 +/- 0.04. The response was due to changes in whole-organism enzyme activity as well as to changes in the proportion of enzyme allocated to the hemolymph compart...
متن کاملA morph-specific daily cycle in the rate of JH biosynthesis underlies a morph-specific daily cycle in the hemolymph JH titer in a wing-polymorphic cricket.
A previous study documented a high amplitude, morph-specific daily cycle in the hemolymph JH titer in the wing-polymorphic cricket, Gryllus firmus. The JH titer rose and fell 10-20 fold in the flight-capable [LW(f), long-winged] morph during the late-photophase-early scotophase, while it was relatively constant during that time in the flightless (SW, short-winged) morph. In the present study we...
متن کاملGenetic and diurnal variation in the juvenile hormone titer in a wing-polymorphic cricket: implications for the evolution of life histories and dispersal.
The wing-polymorphic cricket, Gryllus firmus, contains (1) a flight-capable morph (LW(f)) with long wings and functional flight muscles, (2) a flightless morph with reduced wings and underdeveloped flight muscles (SW), and (3) a flightless morph with histolyzed flight muscles but with fully developed wings (LW(h)). The LW(f) morph differed genetically from the SW morph and phenotypically from t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 53 3 شماره
صفحات -
تاریخ انتشار 1999